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The second order contribution to n correlation energy of linear polyenes and polyacenes is 
studied in two partitions of the C.I. matrix, starting from delocalized Molecular Orbitals. When 
one uses the classical partition H = Hscr + V, the correlation energy increases proportionnal 
to the number of electrons, quite independently of the shape of the molecule: Another parti- 
tion, which insures the perturbation matrix to be zero-diagonal, gives a larger 2~a order 
correlation energy; the difference between the 2~ order contributions of these two expressions 
tends to a constant and is larger for a compact system than for a linear one. The dependence 
of the correlation energy to the values of bielectronie integrals used at short distances shows 
that  i t  arises mainly from short range interactions. 

Some statistical models of C.I. matrices are proposed on the basis of the results obtained 
here. They give some interesting results for second order energies but  do not seem to be satis- 
factory for higher orders. 

Der Beitrag zweiter Ordnung zur ~-Korrelationsenergie linearer Polyene und Polyaeene 
wird mittels zweier Aufteilungen der CI-iKatrix studiert, ausgehend yon delokalisierten iV[O's. 
Wenn man die klassische Aufteilung H = HscP + V benutzt, n immt die Korrelationsenergie 
proportional der Zahl der Elektronen zu, unabh/~ngig yon der Gestalt des Molekiils. Eine 
andere Aufteihing, bei der die Diagonalelemente der St6rungsmatrix verschwinden, gibt einen 
gr6Beren Beitrag zweiter Ordnung zur Korrelationsenergie. Die Differenz dieser beiden Bei- 
tr/~ge geht gegen eine Konstante und ist fiir kompakte Systeme grSBer als fiir lineare Molek/ile. 
Es wird gezeigt, dab die Korrelationsenergie im wesentlichen auf Wechselwirkungen kurzer 
Reiehweite zuriickgefiihrt werden kann. Einige statistische Modelle ffir CI-Matrizen werden 
auf  der Grundlage der hier erhaltenen Resultate vorgeschlagen. Sic scheinen ffir Energien 
zweiter Ordnung interessant zu sein, jedoch nicht f/Jr h6here Ordnungen. 

On 6tudie la contribution du 2b ordre ~ l'@nergie de corr61ation ~ de polybnes et polyac~nes 
lin@aires pour deux partitions diff6rentes de la matrice d'Interaction de Configuration (IC) ; on 
utilise des orbitales mol6culaires d61ocalis6es. Quand on emploie la partition classique H = 
HseF + V, r6nergie de corr61ation au 2~ ordre croit proportionnellement au nombre d'61ec- 
trons, ind@pendamment de la forme de la mol6cule. Une autre partition, pour laquelle la 
matriee de l 'op6rateur de perturbation a ses 616merits diagonaux nuls, donne une 6nergie de 
corr61ation au 2b ordre plus grande; la diff6rence entre ces deux contributions du 2~ ordre 
tend vers nne constante e t e s t  plus grande pour une mol6eule compacte que pour nne mol6eule 
lin6aire. La variation de cette 6nergie de corr61ation (du 2b ordre) en fonction des parametres 
utilis6s pour les courtes distances montre que cette 6nergie provient surtout d'interactions h 
courte distance. 

On eonsid~re divers modules statistiques de matrices d'IC fond6s sur les r6sultats pr6c6- 
demment d6crits. Ces modules fournissent des r@sultats int6ressants en ee qui coneerne l'6nergie 
de perturbation du 2~ ordre, mais ils ne donnent pas satisfaction aux ordres sup6rieurs. 
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1. Introduction 

7~/[qiLLER and PLESSET have proposed in 1934 [9] to treat  the correlation 
problem by use of the Rayleigh-Schr6dinger expansion, and have derived an 
expression of the second order correlation energy. In 1955 NESEET [10] used a 
similar idea for a configuration interaction problem. Perturbation technique has 
been applied to a few cases in a priori calculations of small atoms and molecules 
(K:gG~ITZ [7], KELLY [6], G~:.~ALDI [4]), with reasonable success: one seems to 
get about 90% of the correlation energy corresponding to the ehoosen basis. 

On the other hand, BRUECKI~ER has studied the respective convergence of 
Brillouin-Wiguer and I~ayleigh-Schr6dinger expansions for the correlation problem 
in a free electrons gas [l]. He was able to conclude that  when the number N of 
interacting particles increases, the second and higher order energy corrections are 
independent of N in the ]3.W. expansion and remain proportionnal to N when one 
uses the Rayleigh Schr6dinger expansion. In his recent study on N~ G~r~ALDI 
has shown that  the convergence rate of the R.S. expansion is much better than 
that  of the B.W. development. Thus, the superiority of the R.S. expansion seems 
well established both by its asymptotic behaviour, and by its efficiency on small 
systems. 

But the R.S. expansion is not uniquely defined. Most of the authors quoted 
have used the classical partition [hereafter called ~r (:V[.P.) parti- 
tion] : 

H= Hexact = H scr + V 

and have taken HscF as zeroth order Hamiltonian and V as a perturbation opera- 
tor. In that  case the "transition energies" involved in the denominators of the 
R.S. expansion, are the differences between the eigenvalues of H scF, and appear 
consequently as differences between monoeleetronie energies. However it is well- 
known in H.F. theory that  such an approximation gives poor values for the 
spectroscopic transition energies. They are much improved by the inclusion of 
first order correlation corrections. Thus for a z electron problem NESBET [10] used 
in the denominators, instead of 

<0 ] H  set  i0> - <r I H scF 1i> (t) 

the differences 

< 0 1 H I 0 > - - < i l H l i > - - - - < 0 I H S C F I 0 > - - < i I H  s c ~ ] i > - < i ]  V i i>  (2) 

(<0 I V ] 0> being equal to o by definition of H scF) . 
Seeing that  the second-order Rayleigh-SehrSdinger correction gives poor results, 
KELLY [6] found it necessary to sum an infinite series of contributions belonging 
to higher terms (which leads to sum an infinite series of diagrams). This is equi- 
valent to the use of modified denominators in second order terms [2]. 

We have demonstrated that  such an expansion, first proposed by P. S. Er-  
sw~I~ [3] and here after called Epstein-Nesbet (E.N.) expansion, was a particular 
R.S. expansion corresponding to a different partition of the total Hamiltonian [2]. 
Here the unperturbed Hamfltonian is: 

H~ = HSC~ + y <i I V [i> l i> <i [ (3) 
i 

and the modified perturbation Hamiltonian is 

V'= v -  Y<i ] v ]i> [/> <i 1. (4) 
i 
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We were able to show tha t  
t. The 2 nd order correction is always larger in the E.N. expansion than  in the 

classical ~{.P. expansion (in absolute value) ; 
2. The 3 ra order correction is always smaller in the E.N. expansion, which 

insures a faster convergence of tha t  expansion. Epstein-Nesbet series takes in 
account in its second order, terms appearing in highers orders of the Moller- 
Plesset series. This seems to be a simpler way to include the corrections of the 
denominators used by  K~LLY [6]. We have discussed theoretically and illustrated 
numerically the importance of tha t  improvement.  (For a more general discussion 
of the possible partitions of the exact Hamiltonian see S T F X ~  [t5].) 

In  the present paper  we want  to s tudy two different problems. The first one is 
the asymptot ic  behaviour of the Rayleigh-Sehr6dinger expansion for a molecular 
problem. I f  one takes localized molecular orbitals it seems likely tha t  when the 
number  hr of particles and the dimension of the system increase, the correlation 
energy will increase roughly proportionnal to hr, since each of the localized excita- 
tions will provide always the same contribution to the total  correlation energy. 
But  such a result is not a priori evident when one uses deloealized molecular 
orbitals. Thus the first purpose of this paper  is to s tudy if the use of deloealized 
molecular orbitals keeps the variation of the second order energy proportionnal 
to h r . 

The second problem studied here concerns the relative asymptotic  behaviour 
of several R.S. expansions corresponding to different partitions of the exact 
Hamiltonian. 

We also examine here the dependance of correlation energy on the values of 
the exponent ~ of the Slater orbitals of the basis, and we want to show tha t  the 
geometrical shape of the molecules (e.g. the degree of cormexity of the chemical 
graph) determines the differences in the asymptotic  behaviour between two series 
of compounds. 

To s tudy such problems it is necessary to use a very crude model for molecular 
systems. This is the reason why we have chosen x~ systems, where the number  of 
atomic orbitals is extremely reduced. In  the series of linear polyenes each step 
implies only an increase of two electrons (four electrons in the series of polyaeenes) 
while a a, g calculation would imply an increase of at least 10 electrons for each 
new double bond. Of course we consider our series of conjugated molecules only 
as a purely formal problem, without any sake of realism in the order of magnitude 
of the correlation energy per electron, or the values of the transition energies. Thus 
we did not adjust any  parazneters. In  a given core field we use different sets of 
atomic 2pz orbitals to build our molecular orbitMs. 

2. Methods 

A) Choice of the Basis 
We want  to derive here the most  compact formula giving the second order 

correlation energy for a closed shell state. The zeroth order wave function 

is supposed to be self-consistent. One has also a certain number of virtual orbitals 
j* used to build excited states. I t  is not necessary for these orbitals to be the 



Perturbation Methods. I I  393 

canonical SCF orbitals, which diagonalize the matrix of Lagrange multipliers. In  
any case, Brillouin's theorem is fulfilled for the "monoexcited" states. Thus, in the 
second order correlation energy 

E(o~) = ESer + ~ (0 ] V t/)~ 
�9 E 0 -  E~ (5) 

the states i are the "diexcited" states. However the formulas giving the transition 
energies are much simpler when one uses the canonical SCF orbitals and later we 
shall suppose tha t  we start  from them. 

I t  is easy to demonstrate [2] that,  even for a finite basis of atomic orbitals, one 
may  work either in a basis of single determinants or in a basis of eigenfunetions 
of S ~, provided tha t  for a given space function, one considers all the single deter- 
minants with the same Sz  cigenvalue and different spin wave functions. The n th 
order wave function calculated by a perturbation expansion in a basis of single 
determinants, differs only from an S ~ eigenfunction by  (n + l) th order terms. Thus, 
as the expression of the matr ix  elements and of the energies are much simpler in 
that  case, we shall work in a basis of single determinants. 

B )  M a t r i x  E l e m e n t s  a n d  T r a n s i t i o n  Energ i e s  

We shall use the following notations: 
(li*~ represents the determinant got from the ground state determinant by k i l*! 
"excitation" of an electron from the orbital i to the empty  orbital j*, and of an 
electron from the orbital k to the orbital l*. The barred orbitals represent the 
orbitals occupied by  fl spin electrons. 

( ik  ]j* l*) represents the matr ix  element of the operator r ~  : 

(i]~ ] 1 m )  = (~)1.1) ~0 (2) ] ~(1) ~(2)\  U Wl W m /  

J~j = ( i j  l i j )  

Ki j  = (i] l j i ) .  
As usual the e are the Hartree-Fock orbital energies. 

As the determinants used are eigenfunctions of H scF, 

= (7"1[ v 17"~> �9 

This is why we use indifferently the notations 

<7,, I H [ v•> or <7"1 [ v 1 7"~> �9 

A "diexeited" configuration (.~ ] i*) may  involve two "excitations" of the same 
spin or of different spins. 

When the two "excitations" are of the same spin, the matr ix  element is equal 
to the difference of a coulomb and an exchange integral 

( O l H ] , * ' s * ,  j ,  l* . ~ z , J  ) = (i~ [ l * ) -  (i~ [ j*) (6) 

One may  verify tha t  the "transition energy" corresponding to such a "diexcited" 
configuration is: 

Ei~i,z, = el* + st* --  si --  e~ + J l~  + Jj*~* - -  J ~ *  --  J~J* --  J ~ *  --  JIz* - -  

--  K ~  --  Kj,~,  + K~I, + K ~ *  + K~z* + K ~ j * .  (7) 

Remembering tha t  the two excitations may  involve/3 spin orbitals as well as ~ the 

26 Theoret. chim. Acta (Berl.), Vol. 8 
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contributions of that type lead to the summation 

- 2 y E(ik I z* ( s )  
j* <I* E ~  *z* 

The two excitations may be of different spin, for instance in the "diexeited" con- J') figuration -~- . For such a configuration, the matrix element with the ground 

state is equal to 

And the transition energy is equal to 
E~kin* = 81" A- 8l* - -  8~ - -  8k -4- J ~  + JY*~* - -  J k l *  - -  JiJ* - -  J,~i* - -  J~t* + 

A- Kit* § K~l*. (10) 
l* 

One may remark that the configuration ( k 7 )  has the same matrix element with 

T0 and the same transition energy. On the eountrary the " d i e x c i t e d "  configura- 

tions (~" ~ ) a n d  (k/] ~ )  have a different matrix element: 

2 and a different transition energy E~,~,. 
Then the contributions of the configurations with two excitations of different 

spins can be written: 

But it is easy to see that this may be transformed into Z ~ Z Z and the total 
i < k i*<~* 

second order contribution is equal to 
2 ~' ~ ~ ~ [(it I i *  z*) - (~} I Z* ],)]5 (~  I~* z*)~ (~,~ I Z* i*) ~ 

E ~k i* l* E ~  t* ~* < k i* < I* "E~k~*l* ~ 2 

2 ~ ~ ~. (it  Ii* i*) ~ 
</r  j .  E ~ j , j .  

- -  2 
j*<  l* "E~ ~ I* ~* 

(13) 

+ 2 ~  ~ Y= (ii= E J*l*)~ 
�9 j *  </* 8t* -}- ~ t *  - - 2 8 ~  

(a I J* i*) 

§ 

A- 

The corresponding formula in the Moller-Plesset type expansion is much simpler, 
since all the transition energies are then the same: 

E i k j * l *  = E i k l ,  j ,  = 8J* ~- El* - -  81 8k  E~kr l* 2 2 - -  (14) 

then 
- E ~ r  = 4 Z Z Y. Y. (r ]i* z*)~ + (it  [z* i*) ~ - (it  Ii* l*) (it  [z* ]*) 

i < k  j* l* 8t* = t - ez* - -8~- -e~  

(it Ii* i*) ~ (15) 
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I t  is convenient  to introduce a th i rd  approximat ion ,  which combines the  
advan tages  of Epstein-bTcsbet and Moller-Plesset expansions�9 We m a y  use for  the  

�9 i ]* 
t ransi t ion energies of  any  diexeited configuration/c l* ' twice the  mean  value of 

four  t ransi t ion energies corresponding to the four  possible monoexci ta t ions :  
i I y*, k I /* ,  i I l* and  k ]l*. The best  possible choice appears  to correspond to 
a t ransi t ion energy to a " s t a t e "  in termedia te  between the  singlet and  the  tr iplet .  

E~i , z ,  = Elk,*j* = �89 (Efj, + E~, + E~j, + E~, )  
= e~* + ~* -- ~i -- ~ - �89 [(Jii* -- Ktj*) + (JIz* -- K~*) + (16) 

+ (JkJ* -- K~j.) + (J~l* -- Kk~*)] �9 

I t  is clear t ha t  this approx imat ion  corresponds to a new definition of  the non 
pe r tu rbed  Hamf l ton ian  and  of the  per turba t ion  t t amf l ton ian  V". Then the  diagonal  
e lements  ( i  [ V" f i )  of  V" are different f rom zero when i is an exci ted state.  Bu t  
t hey  are cer ta inly smaller t h a n  the  corresponding ( i  [ V l i )  and there  is a priori  
no reason t h a t  t hey  have  all the  same sign�9 Thus,  t h a t  approximat ion ,  which is 
ve ry  convenient  since one m a y  use Eq.  (16) wi th  E~ki. I* ins tead of ~t* -~ st* -- e~ - ek, 
should give much  be t te r  results t h a n  the  ~ . P .  expansion.  We call " in te rmedia te  
expans ion"  this par t i t ion  which combines the  interests of  ~ . P .  and R.S. expan-  
sion. 

C) Remark on the Calculation o/ Matrix Elements 

The compute r  t ime consuming process is the  calculation of the  ma t r ix  elements  
(i/c []* l*). Their  n u m b e r  is about  0,5 (~ - i)~n 4 if  one works wi th  a basis of  
N = ~n a tomic  orbitals for 2n electrons�9 For  instance, the  calculation of the  
second order correlation energy of an anthracene  like molecule requires the  
calculation of abou t  L200 ma t r ix  elements�9 I t  becomes rapidly  difficult to  s tudy  
a large molecule with a reasonable comput ing t ime. 

I n  general 

(ilc ] i* l*) -~ Y Y. Z Z c~ Ckq cl*r c~*s (pq [ rs). (17) 
q r s 

The t ime  needed  for the  direct  calculat ion of all the  (ik ] ~* l*) b y  this  formula  
increases as n s. 

I t  is ve ry  useful to  pe r fo rm the  calculat ion in four successive steps,  introd-  
ucing in te rmedia te  mat r ices  wi th  mixed  basis:  

[(pq ] rs)] --* [(pq [ rl *)] -* [(pq [ j* l*)] -+ [(p/c [ i* /*)]  -* [(i/~ [ i*/*)]-  

Each  of these steps needs a t ime  increasing only  as n 5. The  use of  this  pro- 
g r amming  t r i ck  is necessary to  allow an economic calculat ion of the  second or- 
der corrections.  

3. Results 

We give in Tab.  ~ the  correlation energies for the  first 6 linear polyenes. We 
have  used the  same values of  the  Z exponent  for the calculation of the  monocentr ie  
coulombie integral  and for the  eoulombic integral  be tween l inked a toms.  This 
value has  been var ied  in the  different calculations. In  any  cases, a t  long distances, 
the  ~ value was t a k e n  equal  to  i.625. The geomet ry  was based on bond  length 
al ternat ion,  with lc = c = 1.35 A, and l c -c  = 1.46/~. These values of  bond lengths 

2 6 *  
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are the  exper imenta l  values for butadiene  [5]. We did not  invest igate ,  in such a 

crude model,  the  effect of  the supposed geomet ry  on the  7~-correlation and to ta l  

energies. 

A )  Asymptot ic  Behaviours 

The first str iking result  is tha t ,  for  a given ~ exponent ,  the  Moller-Plesset  2 na 

order correlat ion energy increases l inearly with the  number  n of  carbon a toms in 

the  chain:  i t  appears  ve ry  clearly on Fig. I and by  the  fact  t h a t  the  correlat ion 

energy per  electron is r igourously cons tant  in the  series (see Tab. t). The  Epste in-  

Table 1. Second order contribution to the z correlation energy in the series o] linear polyenes 
C~ H~+~ 

"correlation energy" "correl. energy" 
per electron 

n Z z-SCF )~.P. E.I~. Interm. lVI.1 ). E.N. EE~/EMp 
energy (eV) approx. 

l0 

1.625 --  84.72 1.01 2.04 2.03 0.25 0.51 2.0 
1.400 - -  85.67 0.58 t.17 t.16 0.14 0.29 2.0 
1.200 - -  85.96 0.31 0.63 0.63 0.07 0.16 2.0 
i.045 --  85.69 0.17 0.35 0.35 0.04 0.09 2.0 

1.625 --150.98 t.52 2.67 2.65 0.25 0.44 t.76 
1.400 --152.25 0.88 1.54 L53 0A5 0.26 1.75 
t.200 --t52.51 0.47 0.83 0.83 0.08 0.14 L76 
1.045 --151.90 0.26 0.47 0.47 0.04 0.08 i.80 

1.625 --225.12 2.03 3.23 3.22 0.25 0.40 1.60 
1.600 --226.72 1.17 t.87 1.86 0.15 0.23 1.60 
t.200 --226.93 0.64 1.02 1.02 0.08 0A3 t.59 
1.045 --225.99 0.36 0.58 0.58 0.04 0.07 1.61 

1.625 --305.17 2.54 3.79 3.77 0.25 0.38 1.52 
1.400 --307.10 1.46 2.20 2.t9 0A5 0.22 1.47 
1.200 --307.27 0.80 1.20 1.20 0.08 0.12 1.50 
1.045 --305.98 0.45 0.68 0.68 0.04 0.07 1.51 

12 t.625 --392A3 3.02 4.31 4.30 0.25 0.37 1.43 
1.045 --392.89 0.54 0.78 0.78 0.04 0.06 1.44 

Nesbet  2 nd order correlat ion energy increases wi th  n, but  the correlat ion energy 

per electron decreases slowly when n increases. 
The calculated rat ios be tween E ~  and EMp could be f i t ted by  the  empirical  

formula  : 
E ~  6.0 

- -  = l + ( i s )  
E~e n + 1.86 

As EMp = eMp n (where e~p is the  Rayleigh-Schr6dinger  correlat ion energy per 

electron) 

n + 1.86 
E ~  = eMp n ~ - -  n .  (19) 

6.0 e~s 

Thus when n tends  to infinity, the  difference EE~ -- EMp tends  to a constant  equal  
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Fig. 1. Correlation energy in the series of linear polyenes (~ = 1.625) 

to 6.0 eM~. For ~ = i.625 for instance, this constant is equal to i.5 eV and deter- 
mines the position of the EN asymptot  in Fig. I. 

B) Influence o/the Reduction o/BieIectronic Integrals at Short Distances 
The first main point here is the strong dependence of both EN and ~ P  correla- 

tion energies on the values chosen for the short distances bielectronic integrals. 
This means that  the correlation energy mainly comes/rom short range interactions: 
when one reduces ~ (at short distances only) from 1.625 to 1.045 the correlation 
energy is divided by 5.8 in the butadiene and becomes nearly negligible. Although 
the decrease in Coulomb integrals is relatively small, the larger part  of correlation 
energy appears to araise from interactions in the chemical bond. This dominant 
role of small distances interactions ~-i]l be explained in a later paper: when one 
works in a basis of localized SCF ~ 0 ,  the correlation energy mainly comes from 
"bond excitations" which give contributions proportionnal to [(PPlPP)-  
- (pq ]Pq)]% 

I t  is amazing to plot the SCF ~ electronic energy and the total  g energy 
(EscP + E (~)) as a function of ~ used at short distances (see Fig. 3). I t  appears 

I 

j J  
j j r  

I [ I 1 I I 
0 2 z/ B 8 70 12)7 

Fig. 2. Analysis of the variation of E~N/E~ in the series of linear polyenes 
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Fig. 3. Variation of the SCF energy (dotted line) and total energy (full line) as a function of the 
slater exponent (~) at short distance in C10HI~ 

Table 2. Second order contribution to the z~ correlation energy in the series o/linear polyacenes 
(in eV) 

"correlation energy" "correl. energy" 
per electron 

Z M.P. E.N. interm. M.P. E.N. EE~/E~r 

Benzene 1.045 0.39 0.79 0.81 0.06 0.13 2.03 
1.625 1.43 2.96 2.97 0.24 0.49 2.07 

Naphtalene 1.045 0.61 1.13 t.14 0.06 0 . t l  t.85 
1.625 2.62 4.65 4.66 0.26 0.47 1.77 

Anthracene 1.045 0.89 1.54 1.56 0.06 0.11 1.73 
1.625 3.62 5.94 5.95 0.26 0.43 1.64 

t h a t  the  corre la t ion energy  is of  the  same order  of  magn i tude  t h a n  the  va r ia t ion  
of  the  SCF energy  when ~ changes. B u t  the  min ima  of  the  two  curves do no t  
coincide exact ly .  This has  no t  a precise mean ing  in our  case since we do no t  change 
the  monoelec t ronie  in tegra ls  b u t  i t  suggests  t h a t  the  op t imisa t ion  of  Z should be 
made  af te r  a cer ta in  Configurat ion In t e r ac t i on  has  been done. 

The  o the r  s t r ik ing  phenomenon  is t he  comple te  independence  of  the  ra t io  
EE~,/EMr to the  reduc t ion  of  Z a t  shor t  d is tances  (see Tab.  2). However  one mus t  
not ice  t h a t  th is  ra t io  var ies  s l ight ly  wi th  Z in the  series of  l inear  polyacenes  
(see Tab.  3). 

Table 3. Role o/ quadruple (Q), triple (T )  
and double (13) summations o/ Eq. (13) in 
the 2 n~ order contribution to the correlation 

energy o] linear ~oolyenes (~ = 1.045) 

n Q T D Total 

4 0.151 0.000 0.200 0.351 
6 0.236 0.046 0A96 0.472 
8 0.362 0.044 0.t76 0.582 

10 0.454 0.065 0.168 0.687 
16 0.768 0.069 0.151 0.988 

C) Influence o/ the Shape o/ the Molecule 

I t  is in te res t ing  to  compare  t he  series 
of  l inear  polyenes  and  l inear  polyaeenes.  
I n  t h a t  second series also (see Tab.  2), 
the  Moller-Plessct  energy  per  e lec t ron 
remains  cons tant ,  and  the  Eps t e in -Nesbe t  
energy  per  e lec t ron decreases.  Bu t  t he  
ra t io  Eps te in -Nesbe t  ene rg i e s /~P  energy 
decreases much  more  s lowly t h a n  in t he  
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series o f  l inea r  po lyenes .  I t  is d i f f icul t  f r o m  o n l y  t h r e e  p o i n t s  t o  asser t  t h a t  i t  

t e n d s  t o  1 w h e n  n increases  to  inf in i ty ,  a n d  t h e  l aw  of  v a r i a t i o n  seems t o  be  m o r e  

complex .  

H o w e v e r  one  m a y  say  t h a t  t h e  s lower  decrease  o f  t h e  E p s t e i n - N e s b e t  e n e r g y  

pe r  e l ec t ron  is due  t o  t h e  f ac t  t h a t  t h e  m o l e c u l a r  d i a g r a m  is m o r e  c o m p a c t  t h a n  in  

t h e  series o f  l inear  p o l y e n e s :  whi le  t h e  n u m b e r  o f  bonds  pe r  a t o m  t e n d s  to  I in  t h e  

series o f  l inear  po lyenes ,  i t  t e n d s  to  i .25  in t h e  series o f  po lyacenes .  

A n o t h e r  conc lus ion  t h a t  m a y  be  d r a w n  f r o m  Tabs .  t a n d  2 concerns  t h e  

v a l i d i t y  o f  t h e  " I n t e r m e d i a t e  e x p a n s i o n "  on  t h e  t r a n s i t i o n  energies .  I n  t h e  t w o  

series,  t h e  E p s t e i n - N e s b e t  a n d  " I n t e r m e d i a t e "  co r r e l a t i on  energies  n e v e r  differ  b y  

m o r e  t h a n  0.02 eV. Th i s  conf i rms  t h e  in t e re s t  o f  t h a t  a p p r o x i m a t i o n .  One  m u s t  

say  h o w e v e r  t h a t  t h e  a g r e e m e n t  is n o t  so good  for  h e t e r o a t o m i e  sys tems .  

4. Discuss ion of the  Resu l t s  

A )  S ta t i s t i ca l  I n t e rpre ta t i on  

I t  is really interesting t~ find such a regularity in the v~riations of the second order energies 
with n. One may think then that  the law empirically found could be theoretically derived. But 
one does not know any explicit dependance on n of the zeroth-order wave function. One could 
imagine of course that  the second order perturbation energy calculated from the explicit 
Hiickel Molecular Orbital would not lie far from the second order correlation energy and would 
follow the same laws when n increases. But even then, and with closure approximation the 
summations seem very difficult to perform. 

Within these limits it is possible however to draw some conclusions from the results already 
got. First  one may introduce a simple statistical model of the Configuration Interaction matrix. 
Let  us assume that  all the offdiagonal elements of that  matrix are equal to + r  or --r. We also 
make a closure approximation on the energies: we suppose that  the transition energies are equal 
tozJE for the monoexcited states 2z~E for the diexcited states and so o n . . .  I f  we work in a basis 
of an  atomic orbitals for a 2n electrons problem, the number of molecular integrals in Eq. (15) 
increases roughly proportionnal to 2n4(a - -  i )  2. Then the second order energy will be about 

E(~) 2 n4(a - - t )  2 r 2 (20) 
2 A E  

When n varies r and AE change. But  if one considers for instance the case of linear polyenes 
one may verify that  the mean value of the transition energies for the monoexeited states is 
approximatly constant when n increases: it appears clearly from exciton theory [14] that  the 
spectrum of transition energies becomes more dense and broader but  remains symmetrical 
around the ran* transition energy for ethylene. Thus we may consider A E  is a constant, and we 
get the law r =/(n) .  As E 2 ~- 2en (where e is the correlation energy per electron) 

2e A E  
r2 (0~ - - l )  2 n a (21) 

] r I -- c' n - ' l , .  (22) 
I t  seems difficult to verify this law for an arbitrary molecular integral (ik I ?* ~*)" In  fact the 
integrals do not perhaps behave in the same way according to their nature. 

Let  us examine for instance the behaviour of an integral 

J,~* = (i]* I ij *) (23) 
involved in the diagonal elements (i ] V l *) of the Rayleigh-Sehr6dinger perturbation theory. 

l 
We assume that  the molecular orbitals i and j* are such that  [cr, [=  I cr~, [=~-~ for all 

atoms r. Then 
1 t 

J,j~ = Z - ~  (pq ]pq) = - ~  Z (pq ] pq) .  (24) 
2a,q 

I f  we assume that  (pq t Pq) varies as R -1, we may use for the atomic integrals the series 
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(~, ~./2, ~,/3.. .  ~/n). Where % = (pp, pp). Then we mus t  sum the  elements of a matr ix  the superior 
par t  of which is equal to 

1 1 1 
~ ~ ' " ~  

t 1 
1 

2 n - 1  

(25) 

t 

1 

(p~ I pq) = x ~ + ~  + - X - -  + " '"  + ~ + " "  + 

n--1  n - - ] r  [ n- -1  ~ n - -1  ~ ] 

,=o  k + t k + ~ -  - ~ . (261 ] 
k 

One knows t h a t  ~ t / P  ~ log n + c + 0( l /n)  where c ~ 0.577 is the  Euler 's  constant  

Thus 

n ~ k +--~-1- = n(log ~ + e) (27) 

"-~ k ~-~ k + 1 "-~ 1 (28) 
~ k + t  ~0 k + l  ~0 k + l  /~=0 k= k= 

Now 
= n - ( log  n + c ) .  

>2 (pr ] pr = 2 [n(log n + e) - -  n + log n + c] 

= ~t [n(log n + c - -  1) + log n + c] .  
Thus, 

2 I  ( l o g n + c - - l )  I o g n + c ]  l o g n  
J , j .  

Thus all the  molecular integrals do not  vary  following the  same law. 
This is clear also from the  consideration of 

E ~  - -  E~s -+ constant  = a .  

I t  has been demonstra ted elsewhere [8] t h a t  

<i I v Io> 2 <i f v l i> 

where i are the  diexcited state. Then, we must  write in our simple model 

n 4 r~ <i ] V [/> 

a = (2AE)~ 

n 
= b - ~ < i l V [ i > .  

Thus we find 

(29)  

(30) 

(3~) 

(82)  

<i IV  f i> "- t i n - 1 .  (33) 

log n . There remains a certain discrepancy between 
n 

Our previous calculation gave J~j~ - 

these two laws, bu t  bo th  agrees to give a slower var ia t ion to the diagonal elements (i I V i i>. 
These speculations m ay  be verified by  the analysis of the  contributions of respectively the  

quadruple, triple, and  double summations  in Eq. (13). One sees from Tab. 3 t h a t :  
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1. the quadruple summations are responsible of the linear increase of the second order 
correction; thus it is reasonable to assume tha t  

(i~ I ]* l*) ~ Gn--31~ ; 
2. the triple summations give a contribution which tends to a constant. This indicates that  

the elements (ii I ]* l*) follow the same law; 
3. the double summations contribution also tends to a constant; this result confirms that  

the integrals (ii I ~* J*) follow a n -1  variation. 

B )  Consequences/or  Higher Orders 

Some interesting results may be got from this crude statistical model. One of them concerns 
the transition energy and will be demonstrated in another paper ~8]. I t  shows that  in the calcu- 
lation of the second order transition energy (difference between the second order perturbed 
energies of a mono excited state and of the ground state), the effect of the "tr i-and di- excited" 
states tends to a limit which is equal to twice the correlation energy per electron. In other 
words, when n is large enough, the transition energy may be calculated by the Configuration 
Interaction between the monocxcited states, the effect of the higher excited states only 
lowering the results by a constant. 

Other conclusions concern the convergence rate of the perturbation expansion. We have 
already demonstrated [2] that  in the third order Rayleigh-Schr6dinger correlation energy the 
main part  comes from the diagonal elements (i I V [i) of the diexcited states. We want to 
discuss here the possibilities of use of a statistical representation of the Configuration Inter- 
action matrix such analysis have been tempted for nuclear problems [12, 13]. In that  case one 
knows nearly nothing about the structure of the matrix of which one desires the general 
spectral behaviour. In  electronic problems many features are known about the structure of 
the C.I. matrix and it is possible to deduce some interesting results. We have got so some sta- 
tistical relations relative to the effect o$ the "mono-, di- and tri-excited" states on the second 
order energy of a monoexeited state [8]. 

We shall focnse our at tention here on the effects of higher order terms in the perturbation 
expansion. We shall use two models of the C.L matrix. In  the two cases we assume as before 
tha t  all the off-diagonal elements have the same absolute value r and that  the transition 
energies are equal to p AE for the p-excited states. 

In  the first model we assume that  there is an equal probability for each of diagonal element 
to be +r  or - - r  as seems intuitively reasonable. We shall demonstrate tha t  such a model is too 
optimistic and gives a third order contribution which tends to zero when n increases! We 
recall first tha t  in our case the third order contribution 

(O [ V l i) (i j V ti) (i l V IO) 
E<3~ = Z Z (34) 

j#o (Eo -- E~) (Eo-- EJ) 

Thus i and ] are both diexcited states. They must interact between themselves. One may 
demonstrate tha t  if there are n a diexcited states, the matrix tha t  one may build from them 

r 3 
has about n s non zero elements. Then for each term in E a the absolute value will be 4 ~  with 

[ r3 ~ 2 
equal probability of sign + and --,  than the variance of each term is 2 \ 4 ~ ]  . The mean 

value of the sum of these n ~ terms is equal to zero of course, and the variance is equal to 

2n e ~ . Then the standard deviation of the sum is equal to 

r3 
(~ = na g-2 4AE2 (35) 

2 d E  
Then if we remember that  r 2 = - -  Eq. (25) we have 

n 3 

ef~ t 
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eV~ 
This result is cleary absurd. The value of the constant - f ~ -  is quite small and anyway the 

dependancy to n is unrealistic: the contribution of the third order would decrease when n 
increases. One may generalise that result and show that one gets it also when one uses a 
gaussian repartition of the matrix elements around zero, Moreover it is possible to demonstrate 
that the behaviour of the whole sum over the contributions of order larger than 2 is as bad. 

Then one may think it useful to introduce a second model in which the probability of any 
matrix element (i [ V ] j) is equal to q to be +r and (t --  q) to be --r. Now the mean value is 

r 3 

different from zero. For the third order, the mean value of each term is (2q -- t) ~ ,  and 

r ~ 
for the n e term the mean value is E a = n e ( 2 q  - -  l) (4AE)2 . Using again Eq. (25), we get 

E 3 = nV~(2q-- t) e -2AE 

the variance does not depend on q, so that the standard deviation previously calculated re- 
mains valid. If  q is independent of n this new variation is also unsatisfactory: it indicates that 
the third order correlation energy would increase more quickly than n. One may demonstrate 
that the total sum of the series follow nearly the same law. In such a model the perturbation 
would converge for any n, but would give a bad asymptotic behaviour since the whole correla- 
tion energy increases more quickly than the number of particles. 

Of course, we could suppose that g is a function of n (for example that q ~ �89 as n ~ + co) 
and find any law we want. But that would only be a phenomenologieal model. The conclusion 
of the failure of these two models is that there exist in the Configuration Interaction matrix a 
certain structure; the signs of the matrix elements are not randomly given: there must be 
some correlation between the signs of the elements involved in the same products of a given 
summation. But it is not representable by the assumption that all over the matrix the pro- 
bability to find positive (or negative) elements is greater than -~. 

5. Conclusions 

The  ~r e lectron sys tem in the  series of  l inear  polyenes is of  par t icular  in teres t  

for the  formal  analysis of  the  propert ies  of  a theore t ica l  model.  The  most  s tr iking 

results  t h a t  we get  here for the  correlat ion problem m a y  be summar ized  in the  

following way:  
t. The  use of  the  classical par t i t ion  H = HscF § V for the  pe r tu rba t ion  deve- 

lopment  gives a second order  correlat ion energy absolut ly  propor t ionnal  to  the  

n u m b e r  of  electrons. Thus  the  use of  delocalized molecular  orbitals  gives a satis- 

f ac to ry  asympto t i c  behaviour ,  an  " a  pr ior i"  non ev ident  result .  

This  t y p e  o f  va r ia t ion  wi th  n is the  same t h a t  the  one got  f rom localized orbitMs 

and  local exci ta t ions  [ I l l .  I n  t h a t  approx imat ion  for homoatomie  systems the 

second order correlat ion energy seems to  be essential ly dependan t  on the  na tu re  of  
the  a tom and qui te  insensi t ive to  the  molecular  shape. 

2. The  par t i t ion  of  the  Hami l t on i an  which gives a zero-diagonM per tu rba t ion  
m a t r i x  yields larger  2 na order  correlat ion energies. The  difference be tween  the  two  

second order energies tends  to  a cons tant  when the  number  of  part icles increases. 
I n  t h a t  app rox ima t ion  the  2 nd order  correlat ion energy is m u c h  more  sensit ive to  

t he  molecular  shape. 
3. The  two models  have  the  same dependency  on the  value  of  the  Slater  

exponen t  ~ a t  short  distances. This dependency  shows clearly t h a t  the  correlat ion 
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energy comes mainly  f rom short range interactions. This fact  should favor  the 
configuration interaction from localized molecular orbitals and local excitations 
only. 

4. Compared with the variations of  SCF energies per electron f rom a compound 
to another  the  correlation energy is relatively aspecifie. This indicates t ha t  for 
m a n y  problems concerning the energy of  the ground state (resonance energy, 
difference between the energies of  stereo isomers, rota t ion barriers) the SCF theory  
could give the main  contribution. 

5. The regularities in the variations of  2 nd order correlation energies suggest 
t ha t  the configuration interaction matr ix  could be t reated as a statistical matrix.  
We proposed a simple model and fitted it on the calculated laws. I t  m a y  give 
interesting results concerning the variat ion of  2 nd order quantities. Some difficul- 
ties arise for higher orders contributions. 

The statistical analysis of  large CI matr ix  is just  beginning: a l though it 
encounters some difficulties in the construction of  a sat isfactory model, it appears 
to  be an interesting and promising subject, which has never received enough 
a t tent ion in the molecular ease, a l though it has been extensively worked out  in 
nuclear and atomic spectroscopy [12, i3]. 
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