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The second order contribution to = correlation energy of linear polyenes and polyacenes is
studied in two partitions of the C.I. matrix, starting from delocalized Molecular Orbitals. When
one uses the classical partition H = Hscr + V, the correlation energy increases proportionnal
to the number of electrons, quite independently of the shape of the molecule. Another parti-
tion, which insures the perturbation matrix to be zero-diagonal, gives a larger 2»¢ order
correlation energy; the difference between the 22 order contributions of these two expressions
tends to a constant and is larger for a compact system than for a linear one. The dependence
of the correlation energy to the values of bielectronic integrals used at short distances shows
that it arises mainly from short range interactions.

Some statistical models of C.I. matrices are proposed on the basis of the results obtained
here. They give some interesting results for second order energies but do not seem to be satis-
factory for higher orders.

Der Beitrag zweiter Ordnung zur n-Korrelationsenergie linearer Polyene und Polyacene
wird mittels zweier Aufteilungen der CI-Matrix studiert, ausgehend von delokalisierten MO’s,
Wenn man die klassische Aufteilung H = Hscr + V benutzt, nimmt die Korrelationsenergie
proportional der Zahl der Elektronen zu, unabhiingig von der Gestalt des Molekiils. Eine
andere Aufteilung, bei der die Diagonalelemente der Stérungsmatrix verschwinden, gibt einen
groBeren Beitrag zweiter Ordnung zur Korrelationsenergie. Die Differenz dieser beiden Bei-
trige geht gegen eine Konstante und ist fiir kompakte Systeme groBer als fiir lineare Molekiile.
Es wird gezeigt, daB die Korrelationsenergie im wesentlichen auf Wechselwirkungen kurzer
Reichweite zuriickgefiihrt werden kann. Einige statistische Modelle fiir CI-Matrizen werden
auf der Grundlage der hier erhaltenen Resultate vorgeschlagen. Sie scheinen fiir Energien
zweiter Ordnung interessant zu sein, jedoch nicht fiir héhere Ordnungen.

On étudie la contribution du 28 ordre & P'énergie de corrélation z de polyénes et polyacénes
linéaires pour deux partitions différentes de la matrice d’Interaction de Configuration (IC); on
utilise des orbitales moléculaires délocalisées. Quand on emploie la partition classique H =
Hser + V, Pénergie de corrélation au 2& ordre croit proportionnellement au nombre d’élec-
trons, indépendamment de la forme de la molécule. Une autre partition, pour laquelle la
matrice de I’opérateur de perturbation a ses éléments diagonaux nuls, donne une énergie de
corrélation au 28 ordre plus grande; la différence entre ces deux contributions du 2& ordre
tend vers une constante et est plus grande pour une molécule compacte que pour une molécule
linéaire. La variation de cette énergie de corrélation (du 2& ordre) en fonction des parametres
utilisés pour les courtes distances montre que cette énergie provient surtout d’interactions &
courte distance.

On considére divers modéles statistiques de matrices d’IC fondés sur les résultats précé-
demment décrits. Ces modéles fournissent des résultats intéressants en ce qui concerne I'énergie
de perturbation du 2& ordre, mais ils ne donnent pas satisfaction aux ordres supérieurs.
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1. Introduction

MgrrLer and PLESSET have proposed in 1934 [9] to treat the correlation
problem by use of the Rayleigh-Schrodinger expansion, and have derived an
expression of the second order correlation energy. In 1955 NusBET [10] used a
similar idea for a configuration interaction problem. Perturbation technique has
been applied to a few cases in a priori calculations of small atoms and molecules
(KirenITz [7], KELLY [6], ORIMALDI [4]), with reasonable success: one seems to
get about 909 of the correlation energy corresponding to the choosen basis.

On the other hand, BRUECENER has studied the respective convergence of
Brillouin-Wigner and Rayleigh-Schrodinger expansions for the correlation problem
in a free electrons gas [1]. He was able to conclude that when the namber N of
interacting particles increases, the second and higher order energy corrections are
independent of & in the B.W. expansion and remain proportionnal to N when one
uses the Rayleigh Schridinger expansion. In his recent study on N, GRIMALDI
has shown that the convergence rate of the R.S. expansion is much better than
that of the B.W. development. Thus, the superiority of the R.S. expansion seems
well established both by its asymptotic behaviour, and by its efficiency on small
systems.

But the R.S. expansion is not uniquely defined. Most of the authors quoted
have used the classical partition [hereafter called MorLLEr-PLESSET (M.P.) parti-
tion]:

H= He:mct = HSCF + 14
and have taken HSCF a5 zeroth order Hamiltonian and V as a perturbation opera-
tor. In that case the “transition energies” involved in the denominators of the
R.8. expansion, are the differences between the eigenvalues of H3CF, and appear
consequently as differences between monoelectronic energies. However it is well-
known in H.F. theory that such an approximation gives poor values for the
spectroscopic transition energies. They are much improved by the inclusion of
first order correlation corrections. Thus for a 7z electron problem NrsBET [10] used
in the denominators, instead of
<0 | HSCF | 0> — (i | HSCF | 4) (1)

the differences

O|H |0y —<i|H|iy=<0|HSCF |0y~ (& |HSCF |y — (G| V ]y (2)

(<0 | V | 0> being equal to o by definition of HSCF).

Seeing that the second-order Rayleigh-Schrodinger correction gives poor results,
KELLy [6] found it necessary to sum an infinite series of contributions belonging
to higher terms (which leads to sum an infinite series of diagrams). This is equi-
valent to the use of modified denominators in second order terms [2].

We have demonstrated that such an expansion, first proposed by P. S. Ee-
sTEIN [3] and here after called Epstein-Nesbet (E.N.) expansion, was a particular
R.8. expansion corresponding to a different partition of the total Hamiltonian [2].
Here the unperturbed Hamiltonian is:

H;:HSCF-}—Z(HVH}]?})(H (3)
and the modified perturbation Hamiltonian is
V=V -S| V]G] (4)
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We were able to show that

1. The 204 order correction is always larger in the E.N. expansion than in the
classical M.P. expansion (in absolute value);

2. The 374 order correction is always smaller in the E.N. expansion, which
insures a faster convergence of that expansion. Epstein-Nesbet series takes in
account in its second order, terms appearing in highers orders of the Moller-
Plesset series. This seems to be a simpler way to include the corrections of the
denominators used by Kurry [6]. We have discussed theoretically and illustrated
numerically the importance of that improvement. (For a more general discussion
of the possible partitions of the exact Hamiltonian see STEINER [15].)

In the present paper we want to study two different problems. The first one is
the asymptotic behaviour of the Rayleigh-Schrédinger expansion for a molecular
problem. If one takes localized molecular orbitals it seems likely that when the
number N of particles and the dimension of the system increase, the correlation
energy will increase roughly proportionnal to N, since each of the localized excita-
tions will provide always the same contribution to the total correlation energy.
But such a result is not a priori evident when one uses delocalized molecular
orbitals. Thus the first purpose of this paper is to study if the use of delocalized
molecular orbitals keeps the variation of the second order energy proportionnal
to N.

The second problem studied here concerns the relative asymptotic behaviour
of several R.S. expansions corresponding to different partitions of the exact
Hamiltonian.

We also examine here the dependance of correlation energy on the values of
the exponent & of the Slater orbitals of the basis, and we want to show that the
geometrical shape of the molecules (e.g. the degree of connexity of the chemical
graph) determines the differences in the asymptotic behaviour between two series
of compounds.

To study such problems it is necessary to use a very crude model for molecular
systems. This is the reason why we have chosen 7 systems, where the number of
atomic orbitals is extremely reduced. In the series of linear polyenes each step
implies only an increase of two electrons (four electrons in the series of polyacenes)
while a o, 7z calculation would imply an increase of at least 10 electrons for each
new double bond. Of course we counsider our series of conjugated molecules only
as a purely formal problem, without any sake of realism in the order of magnitude
of the correlation energy per electron, or the values of the transition energies. Thus
we did not adjust any parameters. In a given core field we use different sets of
atomic 2p, orbitals to build our molecular orbitals.

2. Methods
A) Choice of the Basis

We want to derive here the most compact formula giving the second order
correlation energy for a closed shell state. The zeroth order wave function

Y,=|11...9i...nn|
is supposed to be self-consistent. One has also a certain number of virtual orbitals
7% used to build excited states. It is not necessary for these orbitals to be the
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canonical SCF orbitals, which diagonalize the matrix of Lagrange multipliers. In
any case, Brillouin’s theorem is fulfilled for the “‘monoexcited” states. Thus, in the
second order correlation energy

E® — E5°F 1S QiVip® (5)
the states ¢ are the “diexcited”” states. However the formulas giving the transition
energies are much simpler when one uses the canonical SCF orbitals and later we
shall suppose that we start from them.

It is easy to demonstrate [2] that, even for a finite basis of atomic orbitals, one
may work either in a basis of single determinants or in a basis of eigenfunctions
of 82, provided that for a given space function, one considers all the single deter-
minants with the same §, eigenvalue and different spin wave functions. The nth
order wave function calculated by a perturbation expansion in a basis of single
determinants, differs only from an 82 eigenfunction by (n -+ 1)t order terms. Thus,
as the expression of the matrix elements and of the energies are much simpler in
that case, we shall work in a basis of single determinants.

B) Matriz Elements and Transition Energies

We shall use the following notations:
(L17) represents the determinant got from the ground state determinant by
“excitation” of an electron from the orbital ¢ to the empty orbital %, and of an
electron from the orbital k& to the orbital I*. The barred orbitals represent the
orbitals occupied by § spin electrons.

(ik | 7% I¥) represents the matrix element of the operator 755 :

. 1

(ik | L) = {g1” @i | | " P
Jig = (i | )
Kij = (i | ji) -

As usual the ¢ are the Hartree-Fock orbital energies.
As the determinants used are eigenfunctions of HSCF,

<T1|H|'1U2>=<T1|H0|Tz>+<¥[1‘Vlllyz>
= <le l |4 ‘ T2> .
This is why we use indifferently the notations
V| H | WPor (WL |V | Wy
A “diexcited” configuration (}|f) may involve two “excitations” of the same
spin or of different spins.

When the two “excitations’ are of the same spin, the matrix element is equal
to the difference of a coulomb and an exchange integral

O[H[G|f) > = @k | % 1) — @k | 1F 7). (6)
One may verify that the “transition energy” corresponding to such a “diexcited”
configuration is:
Ejpjan = 2 + €0 — &8s — e + Jup + Jpr — Jips — Jogr — Jpge — Jype —
~ Ky — Kypax -+ Kygr -+ Kgrr + Kyr 4 Kyg» (7)
Remembering that the two excitations may involve § spin orbitals as well as « the

26 Theoret. chim. Acta (Berl.), Vol. 8
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contributions of that type lead to the summation

Y *l*__kl**Z
P g (Clatu bl U i

s B (8)
i<k jE<I* 1kjI%
The two excitations may be of different spin, for instance in the “diexcited” con-

figuration ( ;

state is equal to

*
; *> For such a configuration, the matrix element with the ground

.
OB |(£|Ep =, ©
And the transition energy is equal to

E?qu' =gt L e — & — &+ Jig + Jj*l* — Jgpr — Ji,-* — Jk]-* — Jae +
+ K + Kgpx . (10)

&
?l,—* has the same matrix element with

k
One may remark that the configuration (7

Y0 and the same transition energy. On the countrary the “diexcited” configura-
. | I* kgt . .

tions <i 7—*> and <7 Z—*> have a different matrix element:

)

OH| (7

k
and a different transition energy Efs.
Then the contributions of the configurations with two excitations of different
spins can be written:

Z)> = (1)

_ sy TR (12)

Tk * I E{kj*[t

But it is easy to see that this may be transformed into > > > > and the total
i<k <
second order contribution is equal to
[k 5% 09 — 6k |2 792 (k|7 1%)2 (i | 2* %)
=—2 + +
Pon="23 %3 2 i A o

(ik | 7* 7*)*
T <k J* Eizk.’l*l*

(ik | 5% 1¥)2
—ey y y  RITER (13)
% 7*<1* T1j%*
(v | 7* 9%)*
-3y G
i g* Te7* §*

The corresponding formula in the Moller-Plesset type expansion is much simpler,
since all the transition energies are then the same:

E%]”'*l*‘-=E»%]“'*l*=E,%kl*jﬁ=€j*+81*—‘5i—‘8[c (14)
then
g2 (3k | 7% 1%)? + (k| 3% %)% — (ik | 7* 1%) (i | 1% %)
Eye _47,Z<%: 72,,: ; g% + & — &1 — &k
(i |+ 142 s
+2,LZ<% ; 2&‘;*—8{—815 + ( )
(22 | 7% 1*)2

+23 2 2 +

T 7 <I¥ & + e — 28

I (wl77).

i 7* 2(81* ——Bf)
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It is convenient to introduce a third approximation, which combines the
advantages of Epstein-Nesbet and Meller-Plesset expansmns We may use for the

transition energies of any diexcited conﬁguratlon %* , twice the mean value of

four transition energies corresponding to the four possible monoexcitations:
i|j*, k|j* ¢|1* and k|I*. The best possible choice appears to correspond to
a transition energy to a “‘state” intermediate between the singlet and the triplet.

By o = Buprrpr = 5 (Hig» + Bye + Eyjr + Eyrr)
=g+ e — & — & — 3 [(Jog* — Kopr) + (Jurx — Kope) + (16)
+ (Jrgr — Kgg») + (S — Kp#)] -

It is clear that this approximation corresponds to a new definition of the non
perturbed Hamiltonian and of the perturbation Hamiltonian ¥”. Then the diagonal
elements (i | V" | i) of V" are different from zero when ¢ is an excited state. But
they are certainly smaller than the corresponding <i | V | ¢> and there is a priori
no reason that they have all the same sign. Thus, that approximation, which is
very convenient since one may use Eq. (16) with B} jx;« instead of g5+ + &+ — & — &,
should give much better results than the M.P. expansion. We call “intermediate
expansion’ this partition which combines the interests of M.P. and R.S. expan-
sion.

C) Remark on the Calculation of Matrixz Elements

The computer time consuming process is the calculation of the matrix elements
(¢k | 7* 1¥). Their number is about 0,5 (x — 4)>n* if one works with a basis of
N = an atomic orbitals for 2n electrons. For instance, the calculation of the
second order correlation energy of an anthracene like molecule requires the
calculation of about 1.200 matrix elements. It becomes rapidly difficult to study
a large molecule with a reasonable computing time.

In general

@ |71 = 5 3 5 3 eop ciq opr s (01 | 79) (17)
P g 7 s

The time needed for the direct calculation of all the (ik | j* I*) by this formula
increases as nf.

It is very useful to perform the calculation in four successive steps, introd-
ucing intermediate matrices with mixed basis:

[(pg | rs)] = [(pg |72 )] — [(pq | 7% 1¥)] — [(pk | 7* 1¥)] ~ [(ik | 5% 1%)).
Bach of these steps needs a time increasing only as n%. The use of this pro-

gramming trick is necessary to allow an economic calculation of the second or-
der corrections.

3. Results

We give in Tab. 1 the correlation energies for the first 6 linear polyenes. We
have used the same values of the Z exponent for the caleulation of the monocentric
coulombic integral and for the coulombic integral between linked atoms. This &
value has been varied in the different calculations. In any cases, at long distances,
the & value was taken equal to 1.625. The geometry was based on bond length
alternation, with I¢=¢ = 1.85 A, and I¢—¢ = 1.46 A. These values of bond lengths

26*
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are the experimental values for butadiene [5]. We did not investigate, in such a
crude model, the effect of the supposed geometry on the z-correlation and total
energies.

A ) Asymplotic Behaviours

The first striking result is that, for a given & exponent, the Moller-Plesset 2nd
order correlation energy increases linearly with the number n of carbon atoms in
the chain: it appears very clearly on Fig. 1 and by the fact that the correlation
energy per electron is rigourously constant in the series (see Tab. 1). The Epstein-

Table 1. Second order contribution to the m correlation energy in the series of linear polyenes

On Hn+2
“correlation energy” “correl. energy”
per electron

n Z 7-SCF M.P. E.N. Interm. M.P. EN. Ezx/Ewr

energy (eV) approx.

4 1.625 — 84.72 1.01 2.04 2.03 0.25 0.51 2.0
1.400 — 85.67 . 0.58 147 1.16 0.14 0.29 2.0
1.200 — 85.96 0.31 0.63 0.63 0.07 0.16 2.0
1.045 — 85.69 0.17 0.35 0.35 0.04 0.09 2.0

6 1.625 —150.98 1.52 2.67 2.65 0.25 0.44 1.76
1.400 ~152.25 0.88 1.54 1.53 0.15 0.26 1.75
1.200 —152.51 0.47 0.83 0.83 0.08 0.14 1.76
1.045 ~151.90 0.26 0.47 0.47 0.04 0.08 1.80

8 1.625 —225.12 2.03 3.23 3.22 0.25 0.40 1.60
1.600 —226.72 147 1.87 1.86 0.15 0.23 1.60
1.200 —226.93 0.64 1.02 1.02 0.08 0.13 1.59
1.045 —225.99 0.36 0.58 0.58 0.04 0.07 1.61

10 1.625 —305.17 . 2.54 3.79 3.77 0.25 0.38 1.52
1.400 —307.10 1.46 2.20 219 0.15 0.22 1.47
1.200 —307.27 0.80 1.20 1.20 0.08 0.12 1.50
1.045 —305.98 0.45 0.68 0.68 0.04 0.07 1.51
12 1.625 —392.13 3.02 4.31 4.30 0.25 0.37 1.43
1.045 —392.89 0.54 0.78 0.78 0.04 0.06 1.44

Nesbet 2nd order correlation energy increases with n, but the correlation energy
per electron decreases slowly when n increases.
The calculated ratios between Exyx and Eyp could be fitted by the empirical
formula:
Exx 6.0

e =+ (18)

As Eyp = eyp n (where eyp is the Rayleigh-Schrodinger correlation energy per
electron)
n + 1.86

Egn =eupn + 6.0 n

Thus when # tends to infinity, the difference Ewuy — Eup tends to a constant equal

n. (19)
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Fig. 1. Correlation energy in the series of linear polyenes (¢ = 1.625)

to 6.0 exrp. For & = 1.625 for instance, this constant is equal to 1.5 eV and deter-
mines the position of the EN asymptot in Fig. 1.

B) Influence of the Reduction of Bielectronic Integrals at Short Distances

The first main point here is the strong dependence of both EN and MP correla-
tion energies on the values chosen for the short distances bielectronic integrals,
This means that the correlation energy mainly comes from short range interactions:
when one reduces & (at short distances only) from 1.625 to 1.045 the correlation
energy is divided by 5.8 in the butadiene and becomes nearly negligible. Although
the decrease in Coulomb integrals is relatively small, the larger part of correlation
energy appears to araise from interactions in the chemical bond. This dominant
role of small distances interactions will be explained in a later paper: when one
works in a basis of localized SCF MO, the correlation energy mainly comes from
“bond excitations” which give contributions proportionnal to [(pp | pp) —
— (pq | pg) 1

It is amazing to plot the SCF x electronic energy and the total m energy
(Bscr + E(®) as a function of £ used at short distances (see Fig. 3). It appears

J

£ps / Lgy~fpg —>

i L ! I N
4 2 4 3 8 V]
Fig. 2. Analysis of the variation of Exx/Exzs in the series of linear polyenes




308 S. DiNER, J. P. MALRIED, and P. CLAVERIE:
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Fig. 3. Variation of the SCF energy (dotted line) and total energy (full line) as a function of the
slater exponent (&) at short distance in C, H,,

Table 2. Second order contribution to the m correlation energy in the series of linear polyacenes
(in eV)

“correl. energy”
per electron

“correlation energy”’

Z M.P. E.N. interm. M.P. E.N. Ean/Bve
Benzene 1.045 0.39 0.79 0.81 0.06 0.13 2.03
1.625 1.43 2.96 2.97 0.2¢4 0.49 2.07
Naphtalene  1.045 0.61 113 1.14 0.06 0.11 1.85
1.625 2.62 4.65 4.66 0.26 0.47 1.77
Anthracene  1.045 0.89 1.54 1.56 0.06 0.11 1.73
1.625 3.62 5.94 5.95 0.26 0.43 1.64

that the correlation energy is of the same order of magnitude than the variation
of the SCF energy when & changes. But the minima of the two curves do not
coincide exactly. This has not a precise meaning in our case since we do not change
the monoelectronic integrals but it suggests that the optimisation of Z should be
made after a certain Configuration Interaction has been done.

The other striking phenomenon is the complete independence of the ratio
Egx/Ewr to the reduction of Z at short distances (see Tab. 2). However one must
notice that this ratio varies slightly with Z in the series of linear polyacenes

(see Tab. 3).

Table 3. Role of quadruple (Q), triple (T)

and double ( B) summations of Eq. (13) in

the 2na order contribution to the correlation
energy of linear polyenes (& = 1.045)

n Q T D Total
4 04151 0.000 0.200 0.351
6 0.236 0.046 0,196 0.472
8 0.362 0.044 0476 0.582

10 0454 0.0656 0168 0.687

16 0.768 0.069 0451 0.988

C) Influence of the Shape of the Molecule

It is interesting to compare the series
of linear polyenes and linear polyacenes.
In that second series also (see Tab. 2),
the Moller-Plesset energy per electron
remains constant, and the Epstein-Nesbet
energy per electron decreases. But the
ratio Epstein-Nesbet energies/MP energy
decreases much more slowly than in the
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series of linear polyenes. It is difficult from only three points to assert that it
tends to 1 when » increases to infinity, and the law of variation seems to be more
complex.

However one may say that the slower decrease of the Epstein-Nesbet energy
per electron is due to the fact that the molecular diagram is more compact than in
the series of linear polyenes: while the number of bonds per atom tends to 1 in the
series of linear polyenes, it tends to 1.25 in the series of polyacenes.

Another conclusion that may be drawn from Tabs. 1 and 2 concerns the
validity of the “Intermediate expansion” on the transition energies. In the two
series, the Epstein-Nesbet and “Intermediate’ correlation energies never differ by
more than 0.02 eV. This confirms the interest of that approximation. One must
say however that the agreement is not so good for heteroatomic systems.

4. Discussion of the Results
A) Statistical Interpretation

It is really interesting to find such a regularity in the variations of the second order energies
with n. One may think then that the law empirically found could be theoretically derived. But
one does not know any explicit dependance on % of the zeroth-order wave function. One could
imagine of course that the second order perturbation energy calculated from the explicit
Hiickel Molecular Orbital would not lie far from the second order correlation energy and would
follow the same laws when n increases. But even then, and with closure approximation the
summations seem very difficult to perform.

Within these limits it is possible however to draw some conclusions from the results already
got. First one may introduce a simple statistical model of the Configuration Interaction matrix.
Let us assume that all the offdiagonal elements of that matrix are equal to +7or —r. We also
make a closure approximation on the energies: we suppose that the transition energies are equal
to AE for the monoexcited states 24 for the diexcited states and so on. . . If we work in a basis
of an atomic orbitals for a 2n electrons problem, the number of molecular integrals in Eq. (15)
increases roughly proportionnal to 2n#(x — 1)2. Then the second order energy will be about

2nHa —1)2r2
24E )

When # varies 7 and AE change. But if one considers for instance the case of linear polyenes
one may verify that the mean value of the transition energies for the monoexcited states is
approximatly constant when n increases: it appears clearly from exciton theory [14] that the
spectrum of transition energies becomes more dense and broader but remains symmetrical
around the 7zz* transition energy for ethylene. Thus we may consider AE is a constant, and we
get the law r = f(n). As B? ~ 2en (where e is the correlation energy per electron)

Be = (20)

s 2eAE 9
P e @b
7| = Cn=e. (22)

It seems difficult to verify this law for an arbitrary molecular integral (i% | 5* I¥). In fact the
integrals do not perhaps behave in the same way according to their nature.
Let us examine for instance the bebaviour of an integral

Jigr = (i [17%) (23)
involved in the diagonal elements (i | V' | %) of the Rayleigh-Schrodinger perturbation theory.

We assume that the molecular orbitals ¢ and j* are such that |em | = |cms | = 7 for all
n
atoms 7. Then
1 1
Jur = T (pg |pg) =5 T (pg | pg) - (24)
2,9

If we assume that (pg | pg) varies as R, we may use for the atomic integrals the series
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(A 4/2,A/3 ... A/n). Where 4 = (pp, pp). Then we must sum the elements of a matrix the superior

part of which is equal to

(pg [p9) = 4

n—1 n—2 n—=k
Z(?Q]p9)=l(n+‘—2—+—“3—‘*+...+m+...
n—l p—f n—1 1 n—1
=Ak‘—z‘°k+1 =i|ink=20 k+1 _k=0 k+1}

E
One knows that > 1/P=~logn + ¢ + 0{1/n) where ¢ ~ 0.577 is the Euler’s constant
p=1

Thus

n—1 1
nkgok+1 = n(log n + ¢)
n—1 n=1 L a4 8=l
,cz, lc+1 Zlc+1 ,2., k+1

Now
—(og n+c).
Z (pg | pg) = Aln(logn + ¢) —n + logn + c]
79
=A[nflogn +¢—1) +logn +c].
Thus,
(logn +c—1) logn +c

J1*."_’}.
¢ n n?

logn
= (pp | pP) —
Thus all the molecular integrals do not vary following the same law.

This is clear also from the consideration of
Ei — E%; — constant = a.
It has been demonstrated elsewhere [8] that
GCIVI0RGE|V |9
(By — Ey)®

where 7 are the diexcited state. Then, we must write in our simple model
ntr? 5|V |4)

Biw — B = Z

a =

(2AE)2
b 61V 1)
Thus we find
G|V | =dnl,
logn

(28)

(26)

@7

(28)

(29)

(30)

(81)

(32)

(33)

Our previous calculation gave Jiz ~ ——— . There remains a certain diserepancy between
n

these two laws, but both agrees to give a slower variation to the diagonal elements (¢ | V 7).
These speculations may be verified by the analysis of the contributions of respectively the

quadruple, triple, and double summations in Eq. (13). One sees from Tab. 3 that:
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1. the quadruple summations are responsible of the linear increase of the second order
correction; thus it is reasonable to assume that

{2k | 7% 1%) = On—"e

2. the triple summations give a contribution which tends to a constant. This indieates that
the elements (it | % I¥) follow the same law;

3. the double summations contribution also tends to a constant; this result confirms that
the integrals (77 | * j*) follow a n—! variation.

B) Consequences for Higher Orders

Some interesting results may be got from this crude statistical model. One of them concerns
the transition energy and will be demonstrated in another paper [8]. It shows that in the calcu-
lation of the second order transition energy (difference between the second order perturbed
energies of a mono excited state and of the ground state), the effect of the “tri-and di- excited”
states tends to a limit which is equal to twice the correlation energy per electron. In other
words, when » is large enough, the transition energy may be caleulated by the Configuration
Interaction between the monoexcited states, the effect of the higher excited states only
lowering the results by a constant.

Other conclusions concern the convergence rate of the perturbation expansion. We have
already demonstrated [2] that in the third order Rayleigh-Schridinger correlation energy the
main part comes from the diagonal elements ({ | V |7) of the diexcited states. We want to
discuss here the possibilities of use of a statistical representation of the Configuration Inter-
action matrix such analysis have been tempted for nuclear problems [12, 13]. In that case one
knows nearly nothing about the structure of the matrix of which one desires the general
spectral behaviour. In electronic problems many features are known about the structure of
the C.I. matrix and it is possible to deduce some interesting results. We have got so some sta-
tistical relations relative to the effect of the “mono-, di- and. tri-excited’ states on the second
order energy of a monoexcited state [8].

We shall focuse our attention here on the effects of higher order terms in the perturbation
expansion. We shall use two models of the C.I. matrix. In the two cases we assume as before
that all the off-diagonal elements have the same absolute value » and that the transition
energies are equal to 9 AE for the p-excited states.

In the first model we assume that there is an equal probability for each of diagonal element
to be +ror —r as seems intuitively reasonable. We shall demonstrate that such a model is too
optimistic and gives a third order contribution which tends to zero when n increases! We
recall first that in our case the third order contribution

) QIVIDGIVIDGIV IO
EG = ? ?¢o (EO-“Ei) (EO—Ej)

Thus ¢ and § are both diexcited states. They must interact between themselves. One may
demonstrate that if there are n* diexcited states, the matrix that one may build from them

(34)

3

has about #° non zero elements. Then for each term in EB the absolute value will be iE? with
3 \2

equal probability of sign + and —, than the variance of each term is 2 <W . The mean

value of the sum of these #® terms is equal to zero of course, and the variance is equal to

7.8 2
2nb (W) . Then the standard deviation of the sum is equal to

o=n*V2 T . (35)
44 B2

E
Eq. (25) we have

_eYe 1
T V4E < wim -

Then if we remember that 72 = -
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This result is cleary absurd. The value of the constant M];% is quite small and anyway the

dependancy to n is unrealistic: the contribution of the third order would decrease when %
increases. One may generalise that result and show that one gets it also when one uses a
gaussian repartition of the matrix elements around zero. Moreover it is possible to demonstrate
that the behaviour of the whole sum over the contributions of order larger than 2 is as bad.

Then one may think it useful to introduce a second model in which the probability of any
matrix element (z | V |§) is equal to ¢ to be +7 and (1 — ¢) to be —r. Now the mean value iz

3
different from zero. For the third order, the mean value of each term is (29 — 1) (-Z;E—)Z , and

3

,
(AR

— e
3 — —_ |/“
E n]/n(2q '1) € AR

the variance does not depend on ¢, so that the standard deviation previously calculated re-
mains valid. If ¢ is independent of » this new variation is also unsatisfactory: it indicates that
the third order correlation energy would increase more quickly than n. One may demonstrate
that the total sum of the series follow nearly the same law. In such a model the perturbation
would converge for any #, but would give a bad asymptotic behaviour since the whole correla-
tion energy increases more quickly than the number of particles.

Of course, we could suppose that ¢ is a function of n (for example that ¢ — 4 as n — + )
and find any law we want. But that would only be a phenomenological model. The conclusion
of the failure of these two models is that there exist in the Configuration Interaction matrix a
certain structure; the signs of the matrix elements are not randomly given: there must be
some correlation between the signs of the elements involved in the same products of a given
surnmation. But it is not representable by the assumption that all over the matrix the pro-
bability to find positive (or negative) elements is greater than 1.

for the n® term the mean value is E® = n8(2¢ — 1) . Using again Eq. (25), we get

5. Conelusions

The 7 electron system. in the series of linear polyenes is of particular interest
for the formal analysis of the properties of a theoretical model. The most striking
results that we get here for the correlation problem may be summarized in the
following way:

1. The use of the classical partition H = Hscr + V for the perturbation deve-
lopment gives a second order correlation energy absolutly proportionnal to the
number of electrons. Thus the use of delocalized molecular orbitals gives a satis-
factory asymptotic behaviour, an ““a priori” non evident result.

This type of variation with n is the same that the one got from localized orbitals
and local excitations [11]). In that approximation for homoatomic systems the
second order correlation energy seems to be essentially dependant on the nature of
the atom and quite insensitive to the molecular shape.

2. The partition of the Hamiltonian which gives a zero-diagonal perturbation
matrix yields larger 224 order correlation energies. The difference between the two
second order energies tends to a constant when the number of particles increases.
In that approximation the 2nd order correlation energy is much more sensitive to
the molecular shape.

3. The two models have the same dependency on the value of the Slater
exponent £ at short distances. This dependency shows clearly that the correlation
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energy comes mainly from short range interactions. This fact should favor the
configuration interaction from localized molecular orbitals and local excitations
only.

4. Compared with the variations of SCF energies per electron from a compound
to another the correlation energy is relatively aspecific. This indicates that for
many problems concerning the energy of the ground state (resonance energy,
difference between the energies of stereo isomers, rotation barriers) the SCF theory
could give the main contribution.

5. The regularities in the variations of 204 order correlation energies suggest
that the configuration interaction matrix could be treated as a statistical matrix.
‘We proposed a simple model and fitted it on the calculated laws. It may give
interesting results concerning the variation of 2nd order quantities. Some difficul-
ties arise for higher orders contributions.

The statistical analysis of large CI matrix is just beginning: although it
encounters some difficulties in the construction of a satisfactory model, it appears
to be an interesting and promising subject, which has never received enough
attention in the molecular case, although it has been extensively worked out in
nuclear and atomic spectroscopy [12, 13].
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